The nature of O2 activation by the ethylene-forming enzyme 1-aminocyclopropane-1-carboxylic acid oxidase.
نویسندگان
چکیده
Ethylene is a plant hormone important in many aspects of plant growth and development such as germination, fruit ripening, and senescence. 1-Aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACCO), an O2-activating ascorbate-dependent nonheme iron enzyme, catalyzes the last step in ethylene biosynthesis. The O2 activation process by ACCO was investigated using steady-state kinetics, solvent isotope effects (SIEs), and competitive oxygen kinetic isotope effects (18O KIEs) to provide insights into the nature of the activated oxygen species formed at the active-site iron center and its dependence on ascorbic acid. The observed large 18O KIE of 1.0215 +/- 0.0005 strongly supports a rate-determining step formation of an Fe(IV) O species, which acts as the reactive intermediate in substrate oxidation. The large SIE on kcat/Km(O2) of 5.0 +/- 0.9 suggests that formation of this Fe(IV) O species is linked to a rate-limiting proton or hydrogen atom transfer step. Based on the observed decrease in SIE and 18O KIE values for ACCO at limiting ascorbate concentrations, ascorbate is proposed to bind in a random manner, depending on its concentration. We conclude that ascorbate is not essential for initial O2 binding and activation but is required for rapid Fe(IV) O formation under catalytic turnover. Similar studies can be performed for other nonheme iron enzymes, with the 18O KIEs providing a kinetic probe into the chemical nature of Fe/O2 intermediates formed in the first irreversible step of the O2 activation.
منابع مشابه
Synthesis and characterization of [Fe(BPMEN)ACC]SbF₆: a structural and functional mimic of ACC-oxidase.
A mononuclear Fe(II) complex bearing 1-aminocyclopropane-1-carboxylic acid (ACCH) was synthesized and characterized. X-ray crystallography demonstrated that ACC binds to the Fe(II) ion in a bidentate mode constituting the first structural mimic of the expected binding of ACC to the Fe(II) center of the ethylene forming enzyme ACC-oxidase (ACCO). [Fe(BPMEN)ACC]SbF6 also constitutes a functional ...
متن کاملEthylene Production and 1-Aminocyclopropane-1-Carboxylic Acid Conjugation in Thermoinhibited Cicer arietinum L. Seeds.
The effect of supraoptimal temperatures (30 degrees C, 35 degrees C) on germination and ethylene production of Cicer arietinum (chick-pea) seeds was measured. Compared with a 25 degrees C control, these temperatures inhibited both germination and ethylene production. The effect of supraoptimal temperatures could be alleviated by treating the seeds with ethylene. It was concluded that one effect...
متن کاملPyrazinamide and derivatives block ethylene biosynthesis by inhibiting ACC oxidase
Ethylene is an important phytohormone that promotes the ripening of fruits and senescence of flowers thereby reducing their shelf lives. Specific ethylene biosynthesis inhibitors would help to decrease postharvest loss. Here, we identify pyrazinamide (PZA), a clinical drug used to treat tuberculosis, as an inhibitor of ethylene biosynthesis in Arabidopsis thaliana, using a chemical genetics app...
متن کاملEthylene signaling via Ethylene Response Factors (ERFs) modifies wood development in hybrid aspen
Background The phytohormone ethylene (ET) has the potential to regulate secondary growth of plants and wood formation in trees. Application of exogenous ethylene or its in planta precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), to wood forming tissues of hybrid aspen (Populus tremula x Populus tremuloides) enhances xylem growth [1]. In the same study it was demonstrated that stimulation ...
متن کاملIsolation and characterization of a potato cDNA corresponding to a 1-aminocyclopropane-1-carboxylate (ACC) oxidase gene differentially activated by stress.
1-Aminocyclopropane-1-carboxylate (ACC) oxidase enzyme catalyses the final step in ethylene biosynthesis, converting 1-aminocyclopropane-1-carboxylic acid to ethylene. A cDNA clone encoding an ACC oxidase, ST-ACO3, was isolated from potato (Solanum tuberosum L.) by differential screening of a Fusarium eumartii infected-tuber cDNA library. The deduced amino acid sequence exhibited similarity to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 6 شماره
صفحات -
تاریخ انتشار 2008